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It is shown that the so-called statistical theory of turbulence, which can be 
exactly incorporated by the Hopf functional equation, is imperfect in that 
it fails to ensure the irreversible approach to a unique ultimate steady state 
of turbulence (for a steady boundary condition) expected from observation; 
and that this imperfection is removed if a stochastic random-force term is 
added into the Navier-Stokes equation. The ensemble mechanics for the 
random-forced Navier-Stokes flow is formulated by taking into account 
the natural random force, which has usually been neglected in the Navier- 
Stokes equation. 
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1. I N T R O D U C T I O N  

The significance of  a random-forced Navier-Stokes flow has occasionally 
been considered from the physical point of  view, (1-4~ besides the artificial 
introduction of a random force into the Navier-Stokes equation in some 
studies of  turbulence. (5-8) To physicists, it is obvious that the Navier-Stokes 
equation is never perfect but is missing some fluctuation term, which should 
include what may be called the thermal agitation caused by molecular motion. 
Since this term is exceedingly small at normal temperatures, it has been 
conventionally thought that it is unnecessary to take it into consideration in 
order to describe typical laminar motions of  a fluid. The past success of  the 
Navier-Stokes equation in deriving many practically useful laminar-flow 
solutions has been so great that many people still believe every behavior of  
a fluid, including turbulence, to be perfectly governed by the Navier-Stokes 
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equation. On this belief, the statistical theory of turbulence (9~ originated 
and was developed since Reynolds, keeping the concept of an ensemble of 
exact solutions for a vague set of possible initial conditions and appealing 
to the ergodic hypothesis, which assumes the equality of the ensemble 
average and the time average of the flow behavior. This theory was finally 
formulated by Hopf (1~ in such a simple way that the whole ensemble of 
flows is governed by one single closed functional-differential equation for the 
characteristic functional of the velocity-field distribution. Thus, it may be 
said that it is often believed that the solution of the Hopf equation would 
expose all the details of a turbulent flow. 

However, such a general belief is not free from some crucial difficulties. 
Does the Hopf equation guarantee the uniqueness of an ultimate steady state 
of the ensemble ? If  not, every state depends on an initial condition, and then 
what initial condition is best suited to bring forth a state in accord with 
observation? Is the ensemble mechanics really ergodic? Unfortunately, the 
present investigation gives these questions negative answers, as will be de- 
scribed in Section 2. 

We are then in a position to reconsider the problem of whether the Navier- 
Stokes equation is usable for a turbulent (or unstable) flow case. Does the 
small missing term play a greater role than expected ? Betchov (4~ first pointed 
out the possibility that this term can act as a continuous trigger to push an 
unstable flow into turbulence. In order to see the stochastic effect of this 
term in a general way, we can most conveniently use the simple functional 
formulation of turbulence mechanics with the action of a random force, 
which was provided in earlier studies of turbulence (6-8~ as an extended version 
of the Hopf formulation. In Section 3, this formulation is briefly sketched 
and the general effect of the random force is discussed. Here, it will be clear 
that the stochastic missing term has a decisive role in giving the ensemble 
mechanics irreversibility as well as ergodicity, however small it might be. It 
is, indeed, this term that makes our mechanics not deterministic but probabil- 
istic, so that it reveals an ergodic Markovian stochastic process of fluid 
variables. A proper explicit form of the natural random force is shown and 
discussed in Section 4, which completes the ensemble mechanics in this 
presentation. 

In the course of the treatment, the cylinder functional approach to the 
characteristic functional is occasionally retained, in order to avoid a difficulty 
of treating an infinite-dimensional probability density. All the probabilities 
of the velocity field we treat are finite-dimensional within this approach. On 
this basis, the nature of our Markovian stochastic process will be clarified; 
e.g., a many-dimensional Fokker-Planck equation for the probability density 
is constructed, which implies a generalized random-walk motion of the 
(approximate) velocity field. However, since a cylinder characteristic func- 
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tional itself converges (in some sense described in Section 2) to the non- 
cylinder limit, then a symbolic treatment of the corresponding infinite- 
dimensional probability is acceptable only for the conceptual convenience 
in showing that it is in parallel with the exact treatment of a noncylinder 
characteristic functional. For this reason, such a treatment is given with some 
care. 

2. L I M I T A T I O N S  OF THE H O P F  F O R M A L I S M  

Let X be the vectorial Navier-Stokes operator such that ~u/~t = X(U) 
is the incompressible Navier-Stokes equation with the pressure term re- 
expressed by u, where u(x) is the velocity vector field in physical space and 
t is the time variable. Then, the Hopf equation may be expressed as 

0-7 = i y~(x)x~ ~ dx (1) 

where ~b(y, t) is the characteristic functional for the stochastic field u(x) and 
3/Sy(x) denotes functional differentiation with respect to a real vector function 
y(x). Hereafter, Greek subscripts indicate components of a vector or tensor 
and follow the summation convention. The associative conditions for r to be 
a characteristic functional are 

r t) = 1 (2) 

~b*(y, t) = ~b(-y, t) (3) 

the asterisk denoting the complex conjugate, and 

I(~(y, t)] ~< 1 (4) 

Furthermore, r obeys the incompressibility condition: 

3r 
d i v / ~  = 0 (5) 

Next, we write down the inverse Fourier transform of the Hopf equation 
in the cylinder functional approach. We consider y(x) in the form 

M 

yJa(x) = ~ a=,s~(x) (6) 
i = 1  

with M finite, where {s,(x)} is an orthonormal function set in physical space; 
and we define a cylinder functional as 

~bU(y, t) ---- ~b(y ~z, t) (7) 

which is a functional of y [through a,~ = f s,(x)y~(x)dx] but may also be 



90 lwao Hosokawa 

considered as a 3M-dimensional function of {a,~}. Then, the inverse transfor- 
mation 

pM = f ~bM exp(-- ~ ia~,ba,) 3yM (8) 
i = l  

can be performed straightforwardly when 8y M is defined as 

M 

8Y u = 1-~ ~-~ [da~d(2~r) lt21 (9) 

p~ has the meaning of the probability density assigned by its characteristic 
function ~b ~. On this basis, from the Hopf equation (1), we have 

~pM M 
= _ (x p 3 (10) 

and denoting 
/" 

X~ = J s,(x)x,(uM) dx (12) 

Here u M is expressed in terms of {b~} using the same approach as in (6). This 
"probabili ty" equation is sometimes simpler, since it does not include any 
imaginary factor. Now, we find the characteristic base curves of the partial 
differential equation (10) by solving a set of equations 

db e~ 
dt = X~ (13) 

which is equivalent to 8u/Ot = X(U) as M - +  oo. This means that the charac- 
teristic base curves in the function (u~)--time space are nothing but general 
solutions of the approximate Navier-Stokes equation. Thus, the function 
pM and then ~b M always depend on particular initial conditions through these 
characteristic base curves, and then it is difficult, in general, to expect that 
all the ~b M merge to the same one, irrespective of initial conditions. The situa- 
tion is not unchanged as M--+ 0% provided that (~bM(y)} forms a Cauchy 
sequence. 

When all y belong to the Banach space L1 in which f ]y(x)] dx < ~ ,  

and when ~b is analytic in this space so that the functional derivative of ~b is 
bounded, the fact is proved, because we have the relation that, for M > N, 

[ 8~b[yN + O(yM _ yN)] •M(y) ~N(y) By(x) [yM(x) -- y~r(x)] dx (14) J 

keeping in mind the relation 

8 u 8 (11) 



Ensemble Mechanics for the Random-Forced Navier-Stokes F low 91 

with 0 < 0 < 1 (by virtue of  the functional version of  the mean-value theorem), 
which leads to 

(15) 

for all y eL1, where C is a fixed value larger than supl~b/3y(x)[ and 

~y~ -- yNIt = f lye(x) - y~(x)l dx (16) 

Obviously, (~b u} forms a Cauchy sequence with respect to the maximum norm 
for functionals; in other words, ~b M is convergent as M ~ 0% preserving the 
same analytical quality as ~b ~. In contrast, {pM(u)} is hardly convergent in 
the same sense. Nonetheless, the use of p without M will be allowed in our 
notation, e.g., in place of  (10) we may write 

~--~ = - Dr dx (17) 

which is in parallel with (1). In this case, p itself has no meaning, except for 
the convergence of {~bu}. 

Thus, every ~b generally depends on an initial condition and does not 
guarantee the unique existence of an ultimate steady state. This result is 
actually due to the fact that (10) is a first-order differential equation. 

The only exception is for a subcritical Reynolds number, when we expect 
a laminar steady state to appear ultimately. This case is realized by the 
special arrangement of  all the characteristic base curves such that they gather 
asymptotically with increasing time into the single line with u u =uoo~Z(x), 
which expresses a unique, stable, laminar steady state as M - +  oo. The solu- 
tion for the symbolic p in this case may be expressed as the delta 
functional ~11~ 3[u(x) - u~(x)], which should correspond exactly to ~b~o(y) = 
exp[if y(x)u~o(x) dx]. Note that if we have more than one stable steady state, 
u ~ ,  u~2, etc., then p and ~b should depend on initial conditions again since 
any (normalized) linear combination of 3[u(x) - uo~z(x)], ~[u(x) - u| 
etc,, can be a solution for p. Such a case really happens for the supercritical, 
space-limited, main-flow-interacting Burgers model flow; in this case, it was 
argued that the ensemble mechanics governed by the Hopf  equation is not 
ergodic.~ ~2~ 

In this connection, it may also be instructive to mention Tatsumi and 
Ikeda's proof  (13~ that the (information) entropy of  an ensemble of inviscid, 
isotropic, incompressible Navier-Stokes flows should be invariant to time, 
although this fact is not surprising, since the Hopf  equation for the inviscid 
flow case is time-reversibleJ 14~ A brief sketch of  this is given in an alternative 
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way in the appendix. This means, of course, that an equilibrium state, such 
as given by Hopf's energy-equipartitioned solution, ~1~ can never be 
approached from any other state with a different entropy�9 (They derived 
further that the entropy always decreases with time without limitation if 
viscosity exists. This will be amended by taking account of the effect of 
thermal agitation. See the appendix.) 

There is one way of removing such limitations of the Hopf formalism 
for turbulence. It is to modify the Navier-Stokes equation in a different form, 
e.g., to include some independent stochastic term f as in 

8u 
~--~ = Z(U) + f (18) 

To consider an independent stochastic term in the governing dynamics for 
each realization leads, necessarily, to a functional formalism substantially 
different than the Hopf equation; examples are found in the work of 
Novikov, ~6~ Edwards, ~7~ and Hosokawa. (8) In these cases, the random force 
effect obviously stops time reversibility even for the inviscid flow case, as 
is seen in the next section. The functional formalism reveals a Markovian 
stochastic process played in the function space! The model Navier-Stokes 
dynamics in the direct interaction approximation by Kraichnan (16) seems to 
have a similar nature. In fact, starting from a Markovian stochastic process 
very close to what was introduced as representing the basic dynamics of 
Kraichnan's random coupling model, Frisch et al. (zT) succeeded in con- 
structing not exactly Kraichnan's, but a simpler random coupling model. 

3. ENSEMBLE M E C H A N I C S  W I T H  R A N D O M  FORCE ACTION 

According to previous work, ~a~ the basic equation for the characteristic 
functional ~b(y, t) incorporating the effect of a general random force acting in 
the form of (18) is written as follows: 

- -  = x ~ t ) ~ b  d x  (19) 

where 8(x, t) is the ensemble average of the vectorial random force field 
f ( x ,  t )  and 

P(y ,  t )  = ~.. y~(x)yB(x ' )F,a(x ,  x ' ,  t )  d x  dx '  

 fff l ' " ' t )  d x d x ' d x "  + y=(x)ya(x )yy(x )Geay(x, x ,  

+.. .  (20) 
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with F ,  a, G~ay,... denoting, respectively, the second-order, third-order,..., 
cumulants of correlation of the random force field at time t. The only assump- 
tion made on the random force field is that random forces at different times 
are stochastically independent; for example, we have 

(fa(x, t)f~(x', t ' ))  = 3(t - t')F~a(x, x', t) (21) 

where the brackets denote the ensemble average. [8~, F,a, G,ar, etc., may 
depend on u(x).] 

Novikov <6~ gave the same functional equation for the special case in 
which g(x, t) = 0 and all the cumulants vanish except for F~a(x, x', t) =- 
F,~(x - x'), i.e., the case with a homogeneous stationary Gaussian random 
force. The Fourier-transformed expression of this same case was considered 
independently by Edwards ~v) as a starting point of his approach to isotropic 
turbulence. He called it the generalized Liouville equation (averaged over the 
fluctuating force). It may be written symbolically in our physical space 
representation of velocity, as 

8p f 3  l y f  32ur [F~(x 0"7 = - ~ [X~(u)p] dx + ~ ~u,,(x) - x')p] ax dx' (22) 

When we have no special reason for considering a more complicated random 
force, we take (22) as the basic equation. 

It is important to notice that (22) is no longer a first-order differential 
equation, but second-order and parabolic; all curves given by (13) become 
meaningless. In other words, this is a Fokker-Planck or Kolmogorov equation, 
which describes a simple Markovian stochastic process played by a variable 
u(x). Since F should be positive definite, (8~ as is also known from (21), (22) 
is never time-reversible, even if X is. On this point, Betchov's (*~ conjecture 
that the effect of the random force f in (18) is time-reversible is completely 
wrong. Moreover, it is guaranteed C18~ that a many-dimensional Fokker-  
Planck equation of the type (22) has a unique steady-state solution p~o M and 
that all states approach p , ~  irreversibly. Hence, the corresponding solution 
~b~ M exists and the noncylinder limit ~b~o of {~b,o M} represents the exact final 
state of an ensemble of flows. Thus, with the added second term in {22), 
the limitations of the Hopf formalism have been totally removed. However 
small F may be, it cannot be neglected, since the second-order differential 
term characterizes the mathematical quality of the equation. This fact may 
be explained as follows. 

Let us express (22) in the same way as (10), 

Op~ ~t ~ 1 ~ - ~  ~2 
0t = - ~ ~ (X~PM) + 2 "~-~ ~--" ~b~, ObBj (F~"PM) (23) 

i=I ~ ~=I J=l 
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Assume that by means of the proper orthogonal transformation of the space 
R TM 9 {b,~} (note the symmetry of F), we have the diagonal form of (23) as 

at = - ,=1 ~ (~gpU) + 2 ~=17' 1 ebb, (ff~pU) (24) 

Then, each realization of uU(x) in this Markovian stochastic process can be 
constituted by the following generalized random walk {Ab.~} in time At in 
the space R su. 

Abe, = ~g At + (fig At)i/2, (25) 

w h e re ,  is a standard normal random number. This relation may be derived 
by constructing the formal solution of pU using the propagation kernel 
method31~),2 Here, it is to be noted that the second term is proportional 
to At ~/2. Thus, however small f lu may be, this term always dominates the first 
(dynamical) term as At--~ 0. As a result, we can no longer consider u(x) = 
Y. b~s~(x) as differentiable with respect to time in the strict sense! Only in the 
average sense may we consider the time differentiability of u, when x~ is a 
sufficiently stable operator against a small randomization by the second term. 

The explicit form of F representing the effect of  thermal agitation will 
be given in the next section. Besides the natural thermal agitation, we may 
consider a special physical device to generate a different random force 
acting for fluids when different types of iv, G, etc., are given. Otherwise, 
apart from the physics, an interesting possibility of generating a random 
force unconsciously is worthwhile pointing out. It comes in the form of 
roundoff or truncation error in the process of computer work. Suppose that 
we compute an ensemble of solutions of the Navier-Stokes equation (without 
any random force), point by point of time. Then, such an error plays the 
role of some kind of  random force term for the development of u(x) at every 
point of time. As a result, the (sufficiently large) ensemble of calculated solu- 
tions would look time-irreversible, while the theoretical basis has been 
understood to be completely within the Hopf  formalism. However, the explicit 
form of P in this case seems to be unexplored, but is worth studying. 

Generally, it is obvious that the final steady state of our ensemble de- 
pends on X as well as F. However, if F is extremely small comparing to X(u), 
the effect of this is considered to be limited to such a small region of the 
space of u that p has a sharp change of value where the second term on the 
right-hand side of (22) dominates. This offers a typical problem of a singular 
perturbation. In this case, the global quality of the stationary ensemble 
would be rather insensitive to F,  F would act just as a continuous trigger to 
cause a turbulence for a supercritical Reynolds number, while it would 
remain as a trivial random noise around a laminar flow for a subcritical 
Reynolds number. As one example, we present some results of a calculation 

2 See Ref. 19 for an example of  such a calculation. 
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Fig. 5. Energy spectrum of the stochastic 
Burgers (secondary) flow with red noise 
for Re = 100. 
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for the random-forced, one-dimensional, space-limited, main-flow inter- 
acting Burgers flow in Figs. 1-6. In this case the Burgers operator 

1 ~u 2 (26) 
X(u) = u - 2u ~xx + R--e 

replaces the Navier-Stokes operator, where x E [(9, 1]. F is given as 
2 0  

F(x, x') = ~ B,~ sin nzrx sin n=x' (27) 
r L = l  

(Note that the space-limited Burgers flow is not homogeneous in space.) 
For supercritical Reynolds number, Re = 100, the velocity development of 
an ensemble of 200 realizations was calculated, using (25), starting from the 
laminar state u(x) = 0 (with modes cut off beyond the 20th), for the cases 
of (a) all B, = 0.01, (b) B1 = B2 = 0.0l but other B,~ vanishing, and (c) all 
Bn = 0.0001. The details were recently published312) Figures 1-3 show the 
development of total turbulence energy for cases (a)-(c), according to which 
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(secondary) flow with white but very weak noise 
for Re = 100. 

the energy levels of the steady state of the three turbulences are rather the 
same in spite of a big difference in the input random-force power and in the 
type of F. In case (b), the turbulence energy grows rapidly beyond the input 
random-force energy. Figures 4--6 show the energy spectra of the three 
cases. (The solid line in the figures indicates, for reference, one steady solution 
of the Burgers equation which has nearly the k-2  spectrum.) At the steady 
states, the same overall characteristics are seen in all cases. These results 
support the present view of the effect of F. Thus, we may expect a random- 
force independence law (as F - +  0 but r 0) to appear for a lower moment 
feature of the distribution p, i.e., for lower order correlations of fluid variables, 
even for the case of the random-forced Navier-Stokes flow. [This reminds 
us of the Reynolds-number independence law (as Re ~ m), which was 
found for the energy spectrum and decay feature of the space-unlimited, 
one-dimensional Burgers flow3~~ 

4. F O R M  OF N A T U R A L  R A N D O M  F O R C E  

There are noteworthy discussions by Landau and Lifshitz, ~1~ Fox and 
Uhlenbeck, (2~ Kelly and Lewis, (3~ and Betchov C~ of what random force should 
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be added to the Navier-Stokes equation. They concluded that the random 
force is stationary, homogeneous, and Gaussian. The first three works coin- 
cide in deriving the correlation 

- x') = 2 --y [ ex ,  ax,' + 

82 

where K is the Boltzmann constant, T is the absolute temperature, p is the 
density of the fluid, v is the usual kinematic viscosity, and ~ is the second 
kinematic viscosity. Furthermore, they derived the correlation of the random 
force to the heat flux vector. Since the present paper concerns only incom- 
pressible flows, this item will be omitted here. [To include compressible 
flows, we have only to take into account the field dynamics of density and 
other thermodynamic variables as X4, Xs ..... and then (22) is still useful, 
if the full valid form of F is given according to the works of these authors.] 

Although (28) is sufficiently supported by proper physical studies, it 
is a surprise to fluid dynamicists studying incompressible flows that (28) 
shows no solenoidality of the random force field. This means that there exist 
no incompressible flows in the strict sense once the effect of molecular 
fluctuation, which is called thermal agitation, is taken into account in the 
dynamics! However, in order to avoid the mathematical complication of 
having to treat another field dynamics of the density, we prefer to keep 
the concept of solenoidality in this paper by deforming (28) in a solenoidal 
way. That is, 

F ~ ( x  - x ' )  = 2 KTv 8~  
p ~x, Ox r Ox;Ox~' ~ ( x - x ' )  (29) 

Exactly corresponding to this, we have the correlation of wave components 
of the random force field as follows: 

(g.(k, t)ga*(k', t ) )  = 3(t - t')F~B(k , k')  (30) 

with 

1 2KTv 
= - -  8(k - k')(~.~k 2 - k~kB) (31) F~e(k, k ')  (2rr)3 P 

(k  2 = kyk~), where we have put 

t) = f g(k, t) exp(ikax~) ak  (32) f ( x ,  

and note g*(k,  t ) =  g ( - k ,  t) for the reality condition. It is worthwhile 
to note that (31) is in accord with Betchov's formula except that his numerical 
factor is 3 rather than 2. 
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The present functional formalism can help us also in searching for a 
most plausible form of F, as follows. In terms of the argument function in 
wave-number space, (19) in the present case may be written as 

where 

O ~  . , 
~7 = t f z= ( k ) x = [ ~ ] 4  'dk  

l f f z=*(k)za(k')F,,a(k, k')r dk dk' (33) 

kr f v~(k - k')v,(k') dk' - vk2v~,(k) (34) X~(v)= - i k ,  3= B -  k2 ] 

[In order to derive (33) directly from (19), put y (x )=  [1/2(~-)af z(k) 
exp(ik~x~) dx and u(x) = f v(k) exp(ik~x=) dk, noting the reality condition on 
z and v.] Considering the case where the velocity is so small as to be com- 
parable in magnitude with the random force, and where the nonlinear term 
in (34) is completely negligible, we have the simple functional equation for 
the steady state 

-vk2 3z~*(k) zB(k)D~a(k)~b~o = 0 (35) 

assuming the wave number independence of random forces, F~(k, k') = 
3(k - k')D~(k). The solution of (35) is easily found as 

~,~ = exp[- �89 f z,~*(k)zB(k)D,~(k)/(2vk2) dk] (36) 

keeping DB~(--k) = D,B(k) in mind, which follows from the general definition 
(30). This yields 

I 3(k - k')D,B(k ) (37) 
(v"(k)va*(k')) -= i 2 3z~*(k~3zB(k') z=o = 2vk 2 

This is nothing but the fluctuation-dissipation theorem in our fluid motion. 
If the velocity is solenoidal, D=~ is required to be of the form 

(38) D,~B(k) = a(k) 3,~ B - k2 ) 

As a result, we have the energy spectrum of fluid motion per unit mass as 

E(k) = �89 B(k)/vk 2 (39) 

Here, if we employ a consideration similar to Einstein's for the Brownian 
motion that energy is equipartitioned to each degree of freedom of collective 
fluid motion at thermal equilibrium, we can put 

pLSE(k) Ak = KT (40) 
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Here, the box approach (of length L) to physical space was retained to dis- 
cretize wavenumber space. Note that the right-hand side is different from 
~ T ,  because v(k) has only two degrees of freedom on account of solenoid- 
ality. Keeping in mind that lim~_, oo L 3 Ak = (2~-) 3 and combining the relations 
(38)-(40), it is clear that we have reproduced the expression (31). It is obvious 
that Betchov made an error of overcounting the degrees of freedom, forget- 
ting the solenoidality. (Note that the total degrees of freedom of wave motion 
must be far less than those of all kinetic molecular motions, so that we have 
a reason to consider a certain cutoff wave number. This suggests that the 
noncylinder limit of ~b described in the previous section is only the ideal 
limit based on the continuum concept, but is not practically reached.) 

Thus, the forms of F in (29) and (31) are most universal as representing 
the natural random force in our incompressible flow to the best of our 
knowledge, even though they have a slightly unrealistic aspect compared 
to (28). If the flow is far from local thermal equilibrium, the present form 
may break down as Betchov pointed out; but in such a highly nonequilibrium 
case, the Navier-Stokes equation itself loses its validity, so that it is apparent 
that every formulation should start again from the more fundamental basis 
of statistical physics. Finally, it may be noted that our ensemble mechanics 
with the natural random force action reduces simply to the Hopf equation 
for the inviscid flow case with v = 0, where there is no irreversibility. This is 
important in showing that viscosity takes charge not only of the simple 
irreversibility of the ensemble behavior, but also in ensuring the whole 
mechanics to be such a Markovian stochastic process as governed by a 
Fokker-Planck equation [as (22)], which guarantees achievement of a unique 
ultimate steady state of the ensemble. 

5. C O N C L U D I N G  R E M A R K S  

It is unfortunate that no standard analytical technique for solving a 
functional-differential equation exists at present. All particular solutions of 
the ensemble mechanics are left as tasks for the future. We may have a simple 
approach, like a kinetic equation approach to the Liouville dynamics, which 
deals only with lower order correlations of fluid variables. But it is desirable 
that such an approach be substantially correlated with the ensemble mechanics 
in taking valid account of the stochastic aspect of the process. On the other 
hand, a direct approach to the ensemble mechanics by numerical simulation 
[such as suggested by the formula (25)] is also possible. The success of this 
approach seems to depend on an efficient algorithm executable on a present- 
day computer. Finally, it is stressed that this paper does not deny the sig- 
nificance and value of the conventional Navier-Stokes equation in laminar 
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flow analysis, but indicates a direction for improving the Hopf formalism 
in order to involve turbulent flow phenomena in a rational way. 

A P P E N D I X - - E N T R O P Y  OF ENSEMBLE M E C H A N I C S  

The probability equation corresponding to (33) is written in the same 
way as (22), 

0-~ = - 3 v ~  [X,(v)p] dk + �89 8v,,(k) 3va*(k' ) [F"a(k' k')p] dk dk" (A.1) 

According to Shannon, the H function of our information on the ensemble 
may be introduced as 

H(p) = lim fpM 1ogpM 3v•/M (A.2) 
M " * ~  J 

where 3v M is defined in the same way as 3u ~ [cf. (9)] but taking into account 
the cross-product elements of the real and imaginary parts of v M. Omitting 
M in (A.2) and using a simple functional calculus, we proceed with the 
calculation of dH[dt: 

dH f ~P logp 3v 

f { f  , dk = xo('O 

8p - ~] dk dk'} 8v (A.3) 

unless F ~  depends on v. Hence, if the expression (34) is inserted, we have 
the first term in (A.3) equal to 

f f ([2ik,v,(O) + i(3~B - ~--~-)k~v,(O)}p - vk2v~(k) ~ }  dk ~v (A.4) 

the first (square-bracketed) term of which vanishes (note that krvr is odd in 
k). As a result, 

dH 

3p 31) , ~] dk'} 3v (A.5) 

Thus, without any viscosity and random force effects, the entropy as the 
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negative H function should be invariant with respect to time. A further 
calculation yields 

first square-bracketed term in (A.5) = f vk28(O) dk (A.6) 

in which 8(0) is understood as 1/Ak in the limit Ak ~ 0. Although the term 
is indefinite in the continuum limit, it is obvious that viscosity makes the 
entropy decrease without limit and so steady entropy cannot be reached. 
These are the results of Tatsumi and Ikeda. (la) 

However, if there is a random force, the result is different. Since F is 
positive definite, it is clear that the second term in (A.5) is negative. Therefore, 
the entropy decrease should finally be stopped at the steady state, and if 
the initial entropy is too small, the entropy should increase until H is 
saturated. This is assured by constructing the p~ corresponding to ~b| in 
(36). Corresponding to (35), we have 

1 D.a(k)  8P----~ = vk2v=(k)p~ + ~ 8vB,(k ) 0 (A.7) 

which gives 

p= = Acoexp[- f v,,(k)va*(k)vk2/D~,~(k) dk] (A.8) 

where A | is the normalization constant. Thus, we obtain 

dH=dt = f f  sP= [_vk~v~(k) _1~ D~a(k) 8va*(k) ,_Z] B y = 0  

(A.9) 

because of (A.7). The steady value H= is given by (A.2) and (A.8), and 
must never be a minimum. This result is in remarkable contrast to the 
H-theorem in statistical mechanics. 
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